Paper Summary of:

Going Deeper with Convolutions

codename: Inception

By Anthony Martinez
Goal

- Primary focus was not on accuracy
- Motivated by mobile and embedded computing
- Self imposed limitation of 1.5 billion add and multiplies
 - Want adaptation
At the time:

- For larger data sets
 - Simple solution: Increase network size.

- Drawbacks
 - Explosion of parameter size
 - Overfitting
 - Increase in computational resources
Go Deeper

- Don’t just add more layers
- Design a smarter architecture
 - Sparse matrix
 - Can’t do that
 - Dense matrix have a similar property
 - You can build it in modules
 - Network in Network
Inception Module

Groups areas of high correlated statistics

(a) Inception module, naïve version
Conceiving the Inception Module

Why 1x1, 3x3, and 5x5?
(b) Inception module with dimension reductions
1 x 1 convolution

- Mainly used as dimension reduction modules
 - Remove computational bottlenecks
- Allows increase in
 - Depth
 - Width

- A way to reduce C = Channels
 - Keep the size down
Computation size if we want 10 filters: $6 \times 6 \times 10 \times 1 \times 1 \times 32 = 11520$
Computational Cost

28x28x192

Conv 5 x5, Same, 32 filters

28x28x32

28x28x32x5x5x192 = 120 million
1x1 to 5x5

28x28x192 → Conv 1x1, 16 filters → 28x28x16 → Conv 5x5, 32 filters → 28x28x32

28x28x192x16 = 2.4 million + 28x28x16x5x5x32 = 10 million

About 12.4 million
GoogLeNet Components
Stacking Inception Modules

Nine Inception Modules

Input
Traditional Convolutions (Conv + MaxPool + Conv + MaxPool)

MaxPool

Average Pooling

Linear

SoftMax w/Loss

Label
Two Additional Loss Layers for Training to Depth
Revolution of Depth

ImageNet Classification top-5 error (%)