Paper Summary of: Going Deeper with Convolutions

codename: Inception

By Anthony Martinez

Goal

- Primary focus was not on accuracy
- Motivated by mobile and embedded computing
- Self imposed limitation of 1.5 billion add and multiplies
 - Want adaptation

At the time:

- For larger data sets
 - Simple solution : Increase network size.
- Drawbacks
 - Explosion of parameter size
 - Overfitting
 - Increase in computational resources

Go Deeper

- Don't just add more layers
- Design a smarter architecture
 - Sparse matrix
 - Can't do that
 - Dense matrix have a similar property
 - You can build it in modules
 - Network in Network

Inception Module

(a) Inception module, naïve version

Conceiving the Inception Module

(b) Inception module with dimension reductions

1 x 1 convolution

- Mainly used as dimension reduction modules
 - Remove computational bottlenecks
- Allows increase in
 - Depth
 - Width
- A way to reduce C = Channels
 - Keep the size down

Computation size if we want 10 filters: 6x6x10x1x1x32 = 11520

28x28x32x5x5x192 = 120 million

GoogLeNet Components Stacking Inception Modules

Two Additional Loss Layers for Training to Depth

inagenet classification top-5 chor (70)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.